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CHAPTER 1

INTRODUCTION AND BACKGROUND

Structural Variants (SVs), are changes from the reference DNA, greater than 50 DNA

base-pairs in size. SVs play a significant role in disease [3, 47]. However, discovery—

detecting new variants—and genotyping—determining the number of copies of a known

SV—in short-read sequencing (SRS) data is limited in accuracy due to the variants’ large

sizes relative to sequencer read length [3, 12].

Initial attempts to improve SV genotyping accuracy use statistical models that oper-

ate on data aggregates [CITATION]. Fine-tuned for a particular sequencing pipeline or

variant type, these statistical models are limited in their generalization. Machine learn-

ing classifiers begin to alleviate this issue, using hand selected features as inputs to that

models that classify the SV genotype from short-read sequencing data.

These machine learning approaches are limited by using a subset of relevant data.

Using images generated from sequencing data, deep-learning approaches are able to

learn features from higher resolution data, outperforming classic statistical and machine

learning models.

However, all of these approaches are limited by the availability of high-quality train-

ing data. Reframing SV genotyping as an image similarity problem, rather than di-

rect classification, begins to eliminate the issues presented by limited and erroneous SV

datasets. Combining an image similarity paradigm with simulated data further improves

the accuracy of these deep-learning approaches [30, 31].

Transformers, a novel neural network that uses a self-attention mechanism were first

applied to machine translation and natural language processing. Improvements on the

original architecture have been widely used, most famously as the backbone for the GPT

family of models from OpenAI. The recent application of transformer neural networks

to computer vision tasks has achieved state-of-the-art (SOTA) or competitive results for
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tasks such as image classification and object detection [17, 25, 29].

In this thesis, I first provide background on SVs and the foundational approaches to

SV genotyping. I then detail the transformer model and discuss the benefits and trade-

offs of swapping a Convolutional Neural Network (CNN) backbone for a transformer,

described in Chapter 2. Evaluating these trade-offs, I propose a novel approach that

uses image similarity and Vision Transformers (ViT) to improve the accuracy of SV

genotyping in SRS genomes.

1.1 Structural Variants (SVs)

Genetic variation is defined as differences between a sample genome and the refer-

ence genome—an agreed upon DNA sequence for comparison. These DNA sequence

changes can include insertions, deletions, inversions and other more complex edits

[3, 12]. Illustrated in Fig. 1.1, the simplest variant types to understand are insertions—

new sequences of DNA that are in the sample genome but not within the reference—and

deletions—DNA missing from the sample when compared to the reference.

Figure 1.1: Types of Structural Variation (SV) — adapted from Alkan et al [3].

I focus on a subset of genetic variants, SVs, as defined above. The clinical relevance

of SVs is high. Structural variants contribute a significant portion of total genetic vari-

ation within the human population [3]. SVs account for 0.5-1% of sequence variation

among individuals while Single Nucleotide Variants (single base-pair changed) account

for 0.1% [3, 12, 47]. Some SVs rarely appear among the population (less than 1% of

individuals), but because of their size, >1000 base-pairs (kbp), affect large portions
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of DNA. Specifically, these large, uncommon variations have been linked with genetic

disorders and other neurological conditions like autism [3, 41].

1.1.1 Sequencing Technologies

To understand SV presence in and impact on the human genome, two primary categories

of sequencing procedures exist: long-read sequencing (LRS) and short-read sequencing

(SRS). Each process works to most accurately determine the genetic makeup–base-pair

sequence–of a genome; however, tradeoffs exist between cost and accuracy.

SRS works by breaking up the genome into small fragments (∼35-700bp) and se-

quencing both ends of each fragment [23]. Software takes these sequencing fragments

as input and realigns the fragments back to a reference genome; this is referred to as

the alignment process. Secondary data features such as read coverage—the number of

reads aligning to, a position in the reference sequence— are calculated from the aligned

fragments. Genetic variation can be probabilistically detected and assessed from these

secondary features of the aligned sequenced reads. This fragmentation process involved

in short-read sequencing is non-deterministic: sequencing an the same sample multiple

times does not yield identical data [3, 23].

Due to the short length of SRS fragments(∼35-700bp) compared to SV length (¿50bp)

[6] and the stochastic nature of fragmentation, SRS technologies cannot detect many

SVs that are identified by LRS. A recent study that used LRS to assemble genomes

identified 107,590 SVs, 68% of which were not discovered by SRS [18].

These accuracy benefits of LRS do not come without trade-offs—long-read sequenc-

ing can identify a larger set of SVs, but is more expensive and offers lower overall

throughput [22]. Therefore, short-read sequencing remains a widely used approach for

sequencing new samples. One project, All of Us, announced the release of 98,560 new

SRS genomes, demonstrating the broad availability of SRS genome data [?].
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1.1.2 Genotyping

Two steps define the SV “calling“ process: discovery and genotyping. Discovery is the

process of identifying SVs within a sample whereas genotyping determines the copy-

number (0, 1, or 2) of an already identified SV, present within a sequence. Because of

how DNA is combined from parents, it’s possible to have zero, one, or two copies of a

variant. These different genotypes are referred to as homozygous-reference, heterozy-

gous, and homozygous-alternate respectively. Due to the limitations and random error in

sequencing technologies discussed above, the initial discovery step can be highly inac-

curate. Some methods for SV discovery report false discovery rates as high as 89% [12].

For the purposes of this thesis, I concentrate my efforts on the genotyping facet of the

calling process.

1.2 Genotyping Approaches

Figure 1.2: Timeline of Genotyping Approaches.
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1.2.1 Statistics

Due to the the length of SVs (>50bp) being larger than common SRS read length (∼30-

700bp), the genetic variation cannot be detected directly by sequencing the entire vari-

ant. Therefore, SVs must be detected probabilistically through secondary features—

metrics calculated from the sequencer’s output. These secondary features include met-

ric such as read coverage—how many reads match to a genetic location—and fragment

size—the inferred total size of the fragment after alignment back to the reference se-

quence. Operating on aggregate metrics of these features, statistical models have been

used to probabilistically detect and genotype structural variation.

1.2.2 Machine Learning

These statistical models were tuned to a particular sequencing platform and thus, lack

generalization. Developed to improve upon these statistical, parameterized approaches,

the Non-Parametric Structural Variant (NPSV) genotyper used a machine learning tech-

nique, support vector machines (SVM), to genotype structural variants [31]. Using la-

beled input data, SVMs are classifiers that operate on engineered features—attributes

extracted from the data—to distinguish between classes.

NPSV was not the only approach to improve upon statistical methods with machine

learning [5, 9, 13, 15,39]. Similar to NPSV but limited to insertions and deletions, GIN-

DEL, built by Chu et al., also extracts features from SRS data as input to an SVM for

classification. Extracting a fixed set of features from the SRS output limited the data

used by the model for classification. Another indication of the potential to improve this

approach is that it’s different than genotyping approach used by industry experts. These

experts use pileup images to make genotyping decisions.
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1.2.3 Pileup Images

Pileup images are multi-channel charts that display data for a specific genetic locus. As

shown in Figure 1.3, each pixel column in the image represents a single base-pair and

each pixel represents a single sequencing read. The image generation pipeline builds

an image for a padded window around the putative SV’s breakpoints to ensure that

the putative SV is always centered in the image. Each color channel within the image

represents a particular feature, such as read coverage. The final color is a composite of

this evidence and, thus, black regions represent an absence of data.

Figure 1.3: Pileup Image Breakdown.

1.2.4 Deep Learning

The distinction between the ”classical” machine learning approaches, detailed above,

and deep learning (DL) is the feature set that the model uses to make a classification.

Classical machine learning classifiers are engineer by a researcher or software engineer

who hand-selects the features from the dataset from which a decision tree or other clas-

sifier should make its decision. In DL, an artificial neural network (ANN) learns these

features as part of the training process. This delineation is shown in the context of SV

genotyping in Fig. 1.4.

The benefit of this approach is that the model learns features from the data, rather

than only learning weights for a fixed set of features; however, due to the hidden layers

and deep connectivity (i.e. many possible data paths) of these ANNs, it’s often hard to
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Figure 1.4: Classical vs Deep Learning approaches — (a) Classical machine learning
approach that uses hand-selected features and a support-vector machine for direct classi-
fication. (b) Deep learning approach that first generates pileup images from sequencing
data and trains a CNN to genotype from these images.

determine what features the model uses to make its classification, creating a classical

“black box.”

Experimenting with DL for genotyping, researchers at Google implemented a learned

feature, using CNNs (described later in Section 2.2.1) to detect and genotype SNVs

and small indels—insertions and/or deletions. Mimicking the approach a human expert

would take to genotype, the researchers generated pileup images from the aligned se-

quencing reads. This work improved upon The Genome Analysis Toolkit (GATK) [33],

a complex ensemble of statistical models that used hand-crafted features, demonstrating

the effectiveness of a pileup imaged based approach.

Their model, DeepVariant, out-performed SOTA SNV variant calling tools with

>99% accuracy and achieved ”Best Overall” in 3 out of 4 categories in the Preci-

sionFDA v2 Truth Challenge [1], a challenge designed to assess variant calling per-

formance. These results prove the efficacy of DL, computer-vision based models to

analyze sequencing data; however, as it was designed for smaller variants, its accuracy
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at SV genotyping is undefined [37].

DeepSV and SamplotML extended the approach of DeepVariant to focus on struc-

tural variants. Instead of SNVs, their DL-based approach focused on long deletions.

The researchers used a CNN to directly classify pileup images [9, 11].

I hypothesize that the limited results of these SV studies stem from their approach to

directly classify (i.e., genotype) from images. Direct classification models take an single

input and directly predict the genotype. This is a common and valid approach for many

classification tasks where datasets contain good exemplars—distinct and distinguishable

labeled examples. Unfortunately, SV datasets do not fit this criterion and thus, require

augmented approaches to overcome the limitations in training data.

1.3 Data augmentation with simulation

Typical CNNs and other deep-learning backbones (i.e., the base network that is used)

require large datasets. For reference, the dataset used to train Google’s DeepVariant

CNN contained over 500 million examples. Unfortunately, SV datasets have no more

than 3.4 million examples (0.7% of the DeepVariant dataset). Furthermore, there is an

over representation of homozygous-reference examples (i.e., no variant present) within

these datasets, meaning we have even less data for certain genotypes. Additionally, SV

datasets often contain duplicate or overlapping descriptions of the same SV. Lastly, the

stochastic nature of the SRS process creates a large variance in SV descriptions.

Data augmentation through simulation of the SRS process can begin to alleviate

these limitations. NPSV demonstrated this by augmenting their training data with simu-

lated sequencing reads [31]. The researchers begin to model the pipeline-specific biases

by simulating the SRS process [28].
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1.4 Metric Learning

Deep-neural networks, such as Convolutional Neural Networks (CNNs) can struggle

to learn accurate representations for data with minimal similar examples [32]. This

problem commonly arises in spaces such as image search and facial recognition.

Researchers pioneered signature verification by treating the problem as image-similarity

using paired networks. A paired architecture takes two inputs, runs them each through

the same network with the same weights, and computes an energy function between the

outputs of the model. With image similarity, the weight-sharing holds that two similar

inputs will be mapped to similar areas of the feature space. Often, euclidean distance, a

common energy function, can be used as a metric for similarity.

This approach improves models restricted to observing a single or zero examples

of a class before making a prediction. These learning paradigms are called one-shot

and zero-shot learning, respectively, or more generally, few-shot learning. Few-shot

learning aims to solve the problem of learning feature representations from little data.

The problem commonly arises in image verification tasks like signature verification and

facial recognition.

1.4.1 Contrastive and Other Loss Functions

To facilitate a metric-learning objective in the training loop, a specific loss function must

be used. At the end of each training loop, the loss function is calculated to determine the

changes needed for each weight. To learn similarity, the model must learn its weights

to map similar inputs to a similar place within the final feature space—the embedding

space, demonstrated by Fig. 1.5.
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Figure 1.5: Embedding Space — adapted from Bangert et al. [8].

The most common and simplistic approach is to calculate the distance between the

pairs of inputs. Each pair will have an accompanying label describes whether the pairs

are similar or not. Similar pairs are referred to as positive and dissimilar as negative.

The contrastive loss function (Eq. (1.1)) measures how close to 0 positive pairs are and

how far past a threshold (m) negative pairs are [24]. In this equation Y represents the

label (0 for negative pairs and 1 for positive), D is the distance between the pairs’ em-

beddings, and m is a margin constant (typically 1). Using this loss function to optimize

the model’s weights aims to bring positive pairs together and push negative pairs apart

in the embedding space.

Y ∗D2 + (1− Y )max (0,m−D)2 (1.1)

Contrastive loss has been shown to be an effective method for learning similarity;

however, in many cases, similarity within a pair is not binary. For example, in SV

genotyping, having two copies of a variant is more similar to having a single copy than

to having none. If this distinction were to be accounted for in the model, one would need

to employ a different kind of loss function. One approach to solve this calculates the
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loss among a triplet of inputs—an anchor, a positive example, and a negative example—

assuring that the distance between the anchor and the negative is further than the distance

between the anchor and positive. See Fig. 1.6.

Figure 1.6: Triplet loss.

For example, FaceNet, designed by Schroff et al., trained a CNN using triplet loss

to account for nuance in inter-class dissimilarity. FaceNet achieved new SOTA results

on the widely used Labeled Face in the Wild (LFW) dataset, reaching 99.63% accu-

racy [40]. Additionally, this work achieved high representational efficiency—accuracy

from minimal data (128-bytes per face). The researchers carefully selected the triplets

for training, ensuring minimal examples of the same face were present in each batch.

This careful creation of training batches is essential when using these sophisticated loss

functions. This triplet loss function may be effective at capturing the distinction in sim-

ilarity among SV genotypes; however, without careful selection of triplets, using this

loss function can impact the model’s performance [35].

1.4.2 Combining Simulation and Metric Learning

Metric learning begins to aid the issues of limited training data, but the lack of good

exemplars in SV datasets necessitates generating these exemplars through sequencing

simulation. Linderman et al. combined metric learning and data simulation in NPSV-
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deep [31]. The sequencing simulation was adapted to generate pileup images for each

genotype. These images became input to a paired-network with a metric learning objec-

tive.

Additionally, comparing NPSV-deep against other DL approaches [9,39], the image

similarity approach was more successful than direct classification [30]. NPSV-deep

performed with an genotyping accuracy (for deletions) of 90.6% for the Genome in a

Bottle (GIAB) v0.6 Tier 1 SV dataset. For comparison, an approach that used the same

model but with direct classification only attained 74.8% accuracy. Not only does the

few-shot learning approach combat the lack of training examples, combining few-shot

learning with simulated data begins to alleviate the issues presented by the stochastic

process of sequencing.

The research above demonstrates a natural progression from hand-selected features

to learned features using pileup images. Additionally, shifting the genotyping problem

from direct classification to image similarity has improved accuracy. However, there

still exists limitations of a paired-network approach with image similarity.
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CHAPTER 2

TRANSFORMER NEURAL NETWORKS

In the following section, I discuss the history of the transformer neural network

in natural language processing (NLP) and more recently, in computer vision (CV). I

contrast transformers with another computer vision approach, CNNs, and discuss the

potential benefits and trade-offs of using this model in the SV genotyping process.

2.1 Machine Translation

Transformer neural networks, initially developed in the the field of natural language

processing for machine translation, can incorporate long-range context using their self-

attention mechanism, described in detail in Section 2.1.1 [46]. Using the encoder-

decoder architecture shown in Fig. 2.1, a transformer maps an input sequence (of length

n) to an encoded sequence of equal length. From this encoded sequence, the decoder

can generate an output sequence of arbitrary length (length m). The self-attention mod-

ule is built into both the encoder and decoder, allowing the decoder to “attend over all

positions in the input sequence” [46].

Transformers were developed to solve issues of memory and computational effi-

ciency in recurrent neural networks (RNNs), long short-term memory (LSTM), and

other sequence-to-sequence models. RNNs use a sequential model to incorporate rel-

evant data from separate sequence parts. Due to memory constraints, the sequential

model limits the sequence length that the model can account for in its recurrent mech-

anism. Transformers solve this issue by relying solely on self-attention, a data-parallel

calculation.
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Figure 2.1: Classical NLP Transformer Architecture — adapted from Han et al. [25].

2.1.1 Self-Attention

The self-attention mechanism of a transformer is the most specialized aspect that makes

it successful at translation, text generation, and other NLP tasks. For a given word, the

query word, the attention mechanism calculates a vector attention score for the rest of the

words in the sequence. Each word’s attention score represents the relative importance

of that word to the query word. This builds a representation of pairwise relationships

within a sequence that can successfully capture global context in sequence-to-sequence

modeling. The core attention mechanism was designed by Bahdanau et al. [7] and is

run by multiple attention heads in the encoder and decoder of a transformer [46]. Fur-

thermore, unlike RNNs, this calculation does not have sequential dependencies and thus

can be run in parallel.

Similar to the improvements upon contrastive loss, more sophisticated mechanisms

for self-attention have been built [10, 14, 26, 44, 48]. One approach, pioneered by Face-

book AI, improves upon the attention span—how many tokens can be accounted for—of

the transformer [44].
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2.2 Vision

Many attempts have been made to incorporate the transformer attention mechanism into

vision models [27,36,38,49]. A rote attention application to each pixel in an image (i.e.,

each pixel attends to every other pixel) would scale quadratically with image size. How-

ever, one approach, the Vision Transformer (ViT), successfully reduced this complexity

with minimal modification of the original transformer architecture [17].

With a largely out-of-the-box Transformer backbone, ViT first splits an image up

into square patches. Next, the transformer builds a 1D sequence of these patches as input

tokens, analogous to words in the NLP application. From there, a positional encoding

is added to the patches. Because the self-attention calculation can be run in parallel,

the model requires a method to track the position of the query patch. This positional

encoding helps to ensure that if the image patches were rearranged, the inputs to the self-

attention mechanism will be different. An adapted version of this model architecture is

shown in Fig. 2.2.

Figure 2.2: Adapted architecture of a transformer for a pileup — adapted from Dosovit-
skiy et al. [17].
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ViT outperforms widely used computer vision models for image classification and

image-similarity tasks [17]. However, this result was achieved only after extensive pre-

training on the large JFT-300M dataset, with hundreds of millions image examples.

Though requiring lots of training data, these transformers were efficient to train, reach-

ing SOTA accuracy with 2-4X less compute. Aiming to limit the need for large pre-

training, researchers at Facebook developed Data Efficient Image Transformers (DeiT)

that require smaller datasets for training by using substantial data augmentation [45].

Variable Length Inputs

Though ViT was trained on fixed dimensional inputs, transformers can be trained with

variable length inputs: Gong et al. used transformers to classify audio spectrograms

of variable length. Additionally, the researchers employed transfer learning for ViT on

ImageNet to improve the accuracy of their model [21].

2.2.1 Contrast with CNNs

CNN Architecture

CNNs are built from a sequence of convolutional layers that pass over the image. These

convolutional layers function as filters—each layer calculating a function over patches

of the images. A deep CNN is built from many of these convolutional layers in a hier-

archical system that allows for deep complex representation from the stacking of these

filters.

The convolutional layers of CNNs are trained to detect representations of increas-

ingly complex entities. For example, a CNN trained to classify images of dogs, lower

layers consist of convolutions that will detect simple edges, then corners from these

edges, building up to higher layers that can detect dogs.
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Inductive Biases

When a machine learning model is built, assumptions are made about its expected inputs

and outputs, termed inductive biases. For example, a simple linear regression model as-

sumes that its output is a linear function of its inputs. Inductive bias is needed within

machine learning models to limit the parameter space to help the model learn and gen-

eralize from training examples.

An underlying difference between CNNs and ViTs is the set of inductive biases

present within the model. Due to the connected network of convolutional layers, CNNs

possess the trait that if the input image were to be transformed (e.g., scaled or rotated)

the the output for each convolution would be equally transformed. The trait is called

translational equivariance. In addition to translational equivariance, CNN’s filtering

over patches of the image creates a two-dimensional neighborhood structure helpful for

representing locally related information [17]. For example, a CNN expects that relative

importance between two data points is a function of their distance, i.e., closer pixels are

more important to each other. This exists as a bias in the model because close pixels

will effect each other through convolutions.

2.3 Metric Learning with ViT

Different inductive biases, compared to CNNs, can help transformers learn more general

representations of images; however, as demonstrated by [17], a larger training set is

required to obtain this result.

Initial research shows that metric-based learning approaches for image similarity

using transformers can improve upon convolutional approaches [16, 19, 20]. El-Nouby

et al. trained a paired network of transformers and used a contrastive loss function as

the metric learning objective. This model architecture out-performed SOTA tools by as
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much as 2.6% for three separate public image retrieval benchmarks (OP, CUB-200 and

In-Shop) [19].

2.4 Genomic Applications

Tasseo, an image classifier built with transformers, was trained to detect chromosomal

abnormalities and identify chromosomes in karyotype images [42]. The researchers

used a variant of the ViT model, TopViT, that encodes distances between image patches

in the original image rather then a simple 1D encoding. This novel strategy helps to

maintain the 2D-topology of the chromosome in the image. Furthermore, the research

showed success of transformers, when the training dataset is limited .

GeneBERT, uses transformers to model the interactions between different regulatory

elements of a genome. Mo et al. expanded upon CNN-based solutions that did not

account for interaction within a genomic sequence [34].

Motivating my research, collaborators at Google built SVViT with an approach sim-

ilar to DeepVariant, genotypes SVs through direct classification of pileup images [2].

Although not published, SVViT performs with an accuracy of 88.6% (non-reference)

for the GIAB dataset. This improves upon the analogous direct classification approach

with a CNN, but is less accurate than NPSV-deep, a paired-network with CNNs.
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CHAPTER 3

DISCUSSION

Transformers, first built for language tasks, succeed when adapted to vision appli-

cations. The ability to capture long-range context through their self-attention mecha-

nism has been shown to build effective image representations and outperform traditional

convolutional approaches. Additionally, the computational efficiency of training these

model architectures over CNNs can improve the training and development process.

Most importantly, the self-attention model of transformers relates global informa-

tion rather than just local information. This can help the model incorporate long-range

dependencies and build more global representations of relative importance in the image.

This could be transformational in the problem space of SV genotyping.

Because of the relational nature of DNA, we can hypothesize the utility of this atten-

tion mechanism to learning representations of pileup images. There may be long-range

relationships, between distant genetic loci, represented within pileup images. These

relationships will not be captured by a CNN architecture, which focuses on local rela-

tionships, but would be accounted for by transformer’s self-attention.

Though attention may be promising for genomic applications, the inductive biases

presented by CNNs can be helpful for image classification. These properties, like trans-

lational equivariance, help ensure that if an object is in any part of the image or the

image in transformed, it will be classified correctly. Regarding SV genotyping, these

inductive biases are less critical for helping constraining our problem. Since our pileup

images are generated from sequencing data, the data appears upon a defined axis—each

pixel column corresponds to a genomic position (see Fig. 1.3). To control the structure

of the images, the pileup image is generated with the SV in the center. This is analogous

to only using head-shots as input to a facial-recognition model. These constraints may

help to minimize the trade-offs of swapping the model architecture for a transformer.
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Lastly, to the broad definition of SVs, allowing the model to accommodate variable

length inputs may improve the genotyping process. Current approaches, such as NPSV-

deep, constrain the inputs to a fixed (100x300 pixels) size by compressing larger SVs.

This can impact the resolution of the image and underlying data. If an SV exceeds 300

base-pairs, the image will lose the one-to-one correspondence between pixel columns

and base-pairs. We have to aggregate data across multiple base-pairs, losing resolution

and impacting the genotyping accuracy for these large variants. Using a transformer

architecture that accepts variable length inputs, as shown by the Audio Spectrogram

Transformer, may improve the genotyping accuracy.

To recap, applying transformers to SV genotyping presents a few possible bene-

fits. The self-attention mechanism may account for complex genetic relationships, un-

detectable by CNNs, by building a representation of global pair-wise relationships of

sequenced bases. Different inductive biases compared to CNNs could help the model

learn more general representations, potentially lessening the impact of variance in SV

size and location of evidence within the images. Finally, variable size input images

would allow for an increase in data resolution for large variant types.
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CHAPTER 4

PROTOTYPED APPROACH AND PROPOSED WORK

In the following section, I discuss the in-progress plan to incorporate a transformer-

based backbone with a metric learning and simulation paradigm and detail the extent

of progress. Our work will combine the learnings from NPSV-deep and SVViT to im-

prove genotyping accuracy‘. I hypothesize the transformer backbone will improve the

accuracy of genotyping.

4.1 Adapting SVViT

Motivated by NPSV-deep and SVViT [2], my work proposes a combination of the

transformer-based classification approach performed by SVViT with the paired-network

approach of NPSV-deep. Modifying the direct classification network of SVViT will in-

volve building a specialized wrapper around SVViT that takes real and simulated data

as input [2].

Additionally, I will need to modify the network from a direct classification architec-

ture to a paired-network approach with a metric learning objective. This will involve

swapping the network’s loss function to use contrastive loss.

4.2 ViT Variant Selection

Many variants of the original ViT have been built for specialized purposes. As the

computational complexity of attention scales quadratically with input lengths, the ap-

proaches are focused on improving the efficiency of the self-attention mechanism [14,

43]. Since SVViT uses X-ViT by default, a paired-network approach with this back-

bone has been prototyped, but results have not been collected. After these results are
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collected, other methods, such as TopVit, that use improved positional-encoding meth-

ods and have shown success in biological image analysis [42], should be investigated.

4.3 Dataset Creation

I have modified the dataset creation pipeline of SVViT to incorporate the simulated data

used by NPSV-deep. The dataset from NPSV-deep includes distinct multi-dimensional

arrays per putative SV. Each array contains a real image and a set of simulated images for

each of the three possible genotype. Each genotype simulation is run N times, creating

N replicates and 3 ∗N simulated images.

My prototyped approach uses this dataset from NPSV-deep out of the box, building

positive and negative pairs for use with a contrastive loss training loop. However, due to

the semantic design of this dataset, with each array representing a single putative SV, the

dataset is extensible to more sophisticated loss functions as discussed in Section 1.4.1.

4.3.1 Paired Network

To adapt the direct-classification approach of SVViT, I modified the backbone network

structure. SVViT is built on top of a machine-learning package, Scenic. Scenic pro-

vides abstracted functions and utilities to train and test attention-based networks, e.g.,

transformers.

The original approach of SVViT uses single image inputs in a direct classification

paradigm. Given a single SV represented as a pileup image, the X-ViT model predicts

the genotype. I have prototyped a modification of this approach that instead uses a

paired network, as detailed in Fig. 4.1. The paired network works multiple input images

(simulated and real), runs each through identical X-ViT network with the same weights,

and then computes the contrastive loss function based on the outputs of these models.
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Figure 4.1: Structure of the Paired ViT.

4.3.2 Loss Function

Initially, it will be most straightforward to modify the SVViT approach to operate on a

pair of input images and compute the contrastive loss. I have prototyped this initial ap-

proach, but am unable to collect results at this time. A simple contrastive loss, operating

on pairs of simulated and real images, broke the semantic grouping of inputs as single

variants but required the least modification to the codebase.

A proposed modification will transition the inputs to single variants: how the NPSV-

deep network expects its inputs. Specifically, these images will be a single real image,

called the query, and N simulated images (per genotype), termed the support images.

4.3.3 Parameter Modifications

There are many parameters of the X-ViT model that are easily customized for our use-

case. In my prototype I have made no modifications to these parameters.

The first parameter modification to test would be the patch size. This parameter
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determines how the input images are split into tokens. The default configuration breaks

the image into square patches, but I hypothesize that a column patch would be more

effective. Due to the inherent coordinate system within a pileup image, column patches

would split the image into groups of contiguous base-pairs. The patches could be a

single pixel wide and represent individual base-pairs. This would accomplish the task

of splitting the image into distinct semantic entities, base-pair positions. Doing so will

help the model understand global relationships between the genome sections relevant to

each SV.

Another modification enabled by transformers would be a custom positional encod-

ing. The positional encoding is a 1D value that helps to ensure patch-wise translational

equivariance, defined in Section 2.2.1. This encoding allows the model to incorporate

the position into its learning. For SV genotyping, the position of each sequence read

is important relative to the putative breakpoints of the SV. For example, reads near and

around the breakpoints will be the most relevant to the genotyping process. Therefore, it

may be beneficial to use a custom positional encoding that encodes the relative distance

to the breakpoints of the SV.

Finally, many hyper-parameters can be swept—iterated over, and optimized—given

enough time and compute resources. A few parameters determine the materialized struc-

ture of the backbone network, while other parameters like learning rate modify the train-

ing process.

4.4 Conclusion

I have prototyped a paired-network structure with an X-ViT backbone and a metric

learning objective. This model builds pairs of simulated and real images from the dataset

as input to the network. Extensions of my prototype will first focus on modifying the

input pipeline to use a single putative variant, many pairs of images, as input to the
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model. After this, modifications should be made to the patch size and positional encod-

ing. Finally, additional ViT variants should be assessed for their attention mechanisms

and computational efficiency. The code for my prototype is accessible on GitHub [4].
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